

Presented at the

64th American Society of Hematology (ASH) Annual Meeting and Exposition New Orleans, LA • December 10–13, 2022

INCB057643 Monotherapy in Patients With Relapsed or Refractory Myelofibrosis: A Phase 1 Study

Justin Watts, MD,^{1,*} Anthony M. Hunter, MD,² Alessandra lurlo, MD, PhD,³ Blanca Xicoy, MD,⁴ Emily K. Curran, MD,⁵ Francesca Palandri, MD, PhD,⁶ Brandi Reeves, MD,⁷ Alessandro M. Vannucchi, MD,⁸ Xeujun Chen, PhD,⁹ Francis Seguy, MSc,¹⁰ Feng Zhou, PhD,⁹ Fred Zheng, MD, PhD,⁹ Pankit Vachhani, MD¹¹

Introduction

- Bromodomain and extra-terminal (BET) proteins are a class of epigenetic readers that regulate expression of proteins^{1,2}
- These include factors implicated in oncogenesis of hematologic malignancies including myelofibrosis (MF), such as B-cell lymphoma-2, c-Myc, and nuclear factor kappa B (NF-кB)
- INCB057643 is an oral, small-molecule inhibitor of BET that was evaluated in a phase 1/2 study^{3,4}
- INCB057643 was generally well tolerated, with a favorable pharmacokinetic (PK) profile when administered as monotherapy or in combination with the Janus kinase inhibitor ruxolitinib in patients with advanced malignancies
- Encouraging clinical activity was observed in 2 of 3 patients with MF

Objectives

- To evaluate the safety and tolerability of INCB057643
- As monotherapy in patients with relapsed/refractory MF, myelodysplastic syndromes (MDS), or MDS/myeloproliferative neoplasm (MPN) overlap syndromes
- In combination with ruxolitinib in patients with advanced MF and suboptimal response to ruxolitinib

Methods

Study Design and Patients

- This ongoing phase 1, open-label study (NCT04279847) includes a 3+3 design dose-escalation phase (part 1) followed by a dose-expansion phase (part 2)
- Part 1, reported here, enrolled adult patients with histologically confirmed MF, MDS, or MDS/MPN (Figure 1)
- Exclusion criteria included Eastern Cooperative Oncology Group performance status >2, prior BET inhibitor treatment within 5 half-lives, platelet count <50×10⁹/L, absolute neutrophil count <0.75×10⁹/L, and allogeneic transplant ≤6 months before enrollment
- The initial INCB057643 dose was 4 mg once daily (qd) with dose escalation up to 12 mg qd
- All doses were administered continuously in 28-day cycles
- INCB057643 doses that are deemed safe and tolerable in part 1 will be further evaluated in part 2 as monotherapy or in combination with ruxolitinib in patients with MF

MDS, myelodysplastic syndromes; MF, myelofibrosis; MPN, myeloproliferative neoplasm; qd, once daily; r/r, relapsed or refractory; RP2D, recommended phase 2 dose; TGA, treatment group A; TGB, treatment group B.

Study Endpoints

- The primary endpoint is safety and tolerability, including identification of doselimiting toxicities (DLTs)
- Spleen volume and length in patients with MF were evaluated as secondary endpoints
- Additional secondary endpoints including overall response rate, symptom response, anemia response, and red blood cell transfusion requirement will be reported at a later date
- PK was evaluated as an exploratory endpoint

Statistical Analyses

- The full analysis set included all patients who received ≥ 1 dose of INCB057643 and was used for patient demographics, safety, and efficacy analyses
- The PK-evaluable population included all patients who received ≥1 dose of INCB057643 and provided ≥1 postdose plasma sample
- PK data were analyzed using noncompartmental analysis

Results

Patients

A total of 10 patients have been evaluated in part 1 (4-mg cohort, n=6; 8-mg) cohort, n=4; **Table 1**)

Table 1	Patient	Demographics	and Baseline	Characteristics
		Demographios		

	INCB057643 Treatment Group			
Parameter	4 mg (n=6)	8 mg (n=4)	Total (N=10)	
Median (range) age, y	67.5 (59–77)	68.5 (65–79)	68.0 (59–79)	
Male, n (%)	4 (66.7)	3 (75.0)	7 (70.0)	
White	6 (100.0)	3 (75.0)	9 (90.0)	
ECOG PS, n (%)				
0	1 (16.7)	0	1 (10.0)	
1	5 (83.3)	4 (100.0)	9 (90.0)	
Malignancy type, n (%)				
Primary MF	2 (33.3)	1 (25.0)	3 (30.0)	
DIPSS Int-2	2 (33.3)	1 (25.0)	3 (30.0)	
Post–PV-MF	2 (33.3)	0	2 (20.0)	
DIPSS Int-2	2 (33.3)	0	2 (20.0)	
Post–ET-MF	0	2 (50.0)	2 (20.0)	
DIPSS Int-1	0	1 (25.0)	1 (10.0)	
DIPSS Int-2	0	1 (25.0)	1 10.0)	
Unclassifiable MDS/MPN overlap syndrome	1 (16.7)	1 (25.0)	2 (20.0)	
CMML	1 (16.7)	0	1 (10.0)	
RBC transfusion dependent	2 (33.3)	0	2 (20.0)	
Prior treatment				
Ruxolitinib	4 (66.7)	3 (75.0)	7 (70.0)	
Radiotherapy	1 (16.7)	1 (25.0)	2 (20.0)	
Stem cell transplant	0	0	0	
Mean (SD) spleen length below left costal margin, cm*	7.0 (3.6)	15.7 (0.6)	11.3 (5.3)	

CMML, chronic myelomonocytic leukemia; DIPSS, Dynamic International Prognostic Scoring System; ECOG PS, Eastern Cooperative Oncology Group performance status; Int, intermediate; MDS, myelodysplastic syndromes; MF, myelofibrosis; MPN, myeloproliferative neoplasm; Post–ET-MF, post–essential thrombocythemia myelofibrosis; Post–PV-MF, post–polycythemia vera myelofibrosis; RBC, red blood cell. * Among evaluable patients with MF: 4-mg cohort, n=3; 8-mg cohort, n=3.

- 5 patients remain on treatment (4-mg cohort, n=1; 8-mg cohort, n=4); treatment discontinuation in the 4-mg cohort was due to progressive disease (n=3), treatment-emergent adverse events (TEAEs; thrombocytopenia, n=1), and physician decision (n=1)
- Duration of INCB057643 exposure ranged from 29–268 days in the 4-mg cohort and 73–102 days in the 8-mg cohort

Safety

 All 10 patients experienced TEAEs (Table 2), with 9 patients experiencing TEAEs considered related to study treatment

INCB057643 Treatment Group						
Most common	4 mg (n=6)		8 mg (n=4)		Total (N=10)	
TEAEs, n (%)	Any	Grade ≥3	Any	Grade ≥3	Any	Grade ≥3
Thrombocytopenia*	3 (50.0)	1 (16.7)	1 (25.0)	1 (25.0)	4 (40.0)	2 (20.0)
Nausea	1 (16.7)	0	2 (50.0)	0	3 (30.0)	0
Anemia	2 (33.3)	2 (33.3)	0	0	2 (20.0)	2 (20.0)
Hyperuricemia	2 (33.3)	0	0	0	2 (20.0)	0
Hypokalemia	2 (33.3)	2 (33.3)	0	0	2 (20.0)	2 (20.0)

Table 2. Summary of TEAEs Occurring in >1 Patient in the Total Population

* Two of the 4 patients had moderate thrombocytopenia at baseline.

- Grade ≥3 TEAEs were experienced by 7 patients (4-mg cohort, n=5; 8-mg) cohort, n=2)
- Grade ≥3 TEAEs experienced by 2 patients are reported in Table 2; those occurring in 1 patient included chronic obstructive pulmonary disease (COPD), leukocytosis, pancytopenia, and transformation to acute myeloid leukemia in the 4-mg cohort and neutrophil count decrease and pneumonia in the 8-mg cohort
- There were 6 serious TEAEs across 4 patients (4-mg cohort: COPD [n=1], pancytopenia and acute myeloid leukemia transformation [n=1]; 8-mg cohort: COVID-19 and pneumonia [n=1], COVID-19 [n=1])
- One serious TEAE (pneumonia, 8-mg cohort) was considered related to treatment
- No DLTs or fatal TEAEs were observed

Pharmacokinetics

- The mean steady-state maximum plasma concentration and area under the concentration-time curve for INCB057643 4 mg qd were 92.4 nM and 1260 h·nM, respectively, and with 8 mg qd were 178 nM and 1580 h·nM (Figure 2)
- The limited number of participants in the 8-mg cohort precluded any meaningful comparison between the 2 dose groups

Efficacy

- Reductions in spleen volume and length from baseline were observed (Table 3)
- Median (range) best percentage change from baseline in LDH levels was -27.7% (-60.6% to -1.5%) in the 4-mg cohort and -44.4% (-83.0% to -12.4%) in the 8-mg cohort (**Figure 3**)

¹Sylvester Cancer Center, University of Miami, Miami, FL, USA; ²Emory University School of Medicine, Atlanta, GA, USA; ³Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; 4Hospital Germans Trias i Pujol, Institut Català d'Oncologia, Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain; ⁵University of Cincinnati College of Medicine, Cincinnati, OH, USA; ⁶IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy; ⁷University of North Carolina School of Medicine, Chapel Hill, NC, USA; ⁸AOU Careggi, University of Florence, Florence, Italy; 9Incyte Corporation, Wilmington, DE, USA; ¹⁰Incyte Biosciences International Sàrl, Morges, Switzerland; ¹¹O'Neal Comprehensive Cancer Center at UAB, Birmingham, AL, USA

* Presenting author

Figure 2. INCB057643 Plasma Concentration

C, cycle; D day.

Table 3. Best Percentage Change From Baseline in Spleen Volume and Length

Patient	Disease	Dose cohort	Spleen volume change,* %	Spleen length change,* %
1	PMF	4 mg	+53.3	+50.0
2	PMF	4 mg	NA	+133.3
3	Post–PV-MF	4 mg	+21.6	-10.0
4	PMF	8 mg	-29.0	-100
5	Post–ET-MF	8 mg	-5.5	0
6	Post–ET-MF	8 mg	NA	-25.0

ET, essential thrombocythemia; MF, myelofibrosis; NA, not available; PMF, primary myelofibrosis; PV, polycythemia vera. * Negative value indicates reduction in spleen size.

Figure 3. Percentage Change From Baseline in LDH Levels in Individual Patients

BL, baseline; LDH, lactate dehydrogenase

Conclusions

- INCB057643 monotherapy administered at doses of 4 and 8 mg qd was generally well tolerated in patients with relapsed or refractory MF, MDS, and MDS/MPN in dose-escalation cohorts, with no DLTs or fatal TEAEs
- The most common TEAEs were thrombocytopenia, nausea, anemia, hyperuricemia, and hypokalemia
- The study is currently enrolling the cohort of INCB057643 12 mg as monotherapy in patients with MF, MDS, or MDS/MPN
- The study is also enrolling a cohort of INCB057643 4 mg in combination with ruxolitinib in patients with MF and suboptimal response to ruxolitinib

Acknowledgments

Writing assistance was provided by Cory Pfeiffenberger, PhD, an employee of ICON (Blue Bell, PA), and was funded by Incyte Corporation (Wilmington, DE).

References

1. Bose P, et al. Cancers (Basel). 2020;12(10):doi: 10.3390/cancers12102891. 2. Hajmirza A, et al. Biomedicines. 2018;6(1):doi: 10.3390/biomedicines6010016. 3. Falchook G, et al. Clin Cancer Res. 2020;26(6):1247-1257. 4. Data on file. Incyte Corporation, Wilmington, DE. 2022.

